

Department of Chemistry

Suren Das College, Hajo, Kamrup, Assam Program Outcome, Program Specific Outcome

Non CBCS Core-Course under Gauhati University

B. Sc. Chemistry (Non-CBCS)

Program Outcomes (POs)

Department of	After successfully completion of three years degree program in
Chemistry	Chemistry under non CBCS, a student should be able to
Program Outcomes	POs-1. To impart knowledge of General Chemistry covering all the
(POs)	aspects viz. inorganic, organic, physical and analytical Chemistry.
	POs-2. Solve the problem and also think methodically, independently
	and draw a logical conclusion.
	POs-3. Employ critical thinking and the scientific knowledge to
	design, carry out, record and analyse the results of chemical reactions.
	POs-4. Create an awareness of the impact of chemistry on the
	environment, society, and development outside the scientific
	community.
	POs-5. Find out the green route for chemical reaction for sustainable
	development.
	POs-6. To inculcate the scientific temperament in the students and
	outside the scientific community.

Semester-I

PAPER M 101 Physical Chemistry (Credits: Theory-06, Lab-04)

PAPER M 102 Organic Chemistry (Credits: Theory-06)

Semester-II

PAPER M 201 Physical Chemistry (Credits: Theory-06)

PAPER M 202 Organic Chemistry (Credits: Theory-06, Lab-04)

Semester-III

PAPER M 301 Structure and Bonding (Credits: Theory-06, Lab-04)

PAPER M 302 Chemical Bonding (Credits: Theory-06)

Semester-IV

PAPER M 401 Inorganic Chemistry I (Credits: Theory-06)

PAPER M 402 Inorganic Chemistry II (Credits: Theory-06, Lab-04)

Semester-V

PAPER M 501: Quantum Chemistry (Credits: Theory-06, Lab-02)

PAPER M 502 Physical Chemistry (Credits: Theory-06, Lab-02)

PAPER M 503 Organic Chemistry (Credits: Theory-06, Lab -04)

PAPER M 504 Inorganic Chemistry (Credits: Theory-06, Lab -04)

Semester-VI

PAPER M 601 Spectroscopy (Credits: Theory-06)

PAPER M 602 Physical Chemistry (Credits: Theory-06, Lab -04)

PAPER M 603 Organic Chemistry (Credits: Theory-06)

PAPER M 604 Inorganic Chemistry (Credits: Theory-06)

Programme Specific Outcomes (Chemistry Core non-CBCS)

Programme Specific	PSOs-1. Gain the knowledge of Chemistry through theory and practicals.				
Outcomes (PSOs)	PSOs-2. To explain nomenclature, stereochemistry, structures, reactivity,				
	and mechanism of the chemical reactions.				
	PSOs-3. Identify chemical formula and solve numerical problems.				
	PSOs-4. Use modern chemical tools, Models, UV Spectrophotometer,				
	Chemdraw, Charts and Equipments.				
	PSOs-5. Know structure-activity relationship.				
	PSOs-6. Understand good laboratory practices and safety.				
	PSOs-7. Develop research-oriented skills.				
	PSOs-8. Make aware and handle the sophisticated				
	instruments/equipments.				

Course Outcomes (Chemistry Core non-CBCS)

Semester-I											
Course Outcome (After completion of these courses students should be able to)				e to)							
PAPER	M	101	CO-1.	The	students	will	understand	the	principles	of	Chemical

Physical Chemistry	thermodynamics, first law and second law.			
	CO-2. To know about the concept of entropy.			
	CO-3. Understanding will be gained on the concept of rate constant and rate			
	law.			
	CO-4. The laboratory course will help the students to understand the column			
	chromatography, adsorption, conductometry.			
PAPER M 102	CO-1. The students will learn about the IUPAC nomenclature of Organic			
Organic Chemistry	compounds.			
	CO-2. The students will able to understand the bond length, bond angle, bond			
	energy.			
	CO-3. Conformational and configurational isomers will be understood.			
	CO-4. The students will learn the basic of optical activity, asymmetry,			
	dissymmetry or chirality, racemic modification.			
	Semester-II			
Course	Outcome (After completion of these courses students should be able to)			
PAPER M 201	CO-1. The students will learn the ideal behaviour of gases, van der Waals			
Physical Chemistry	equations of state.			
	CO-2. The students will able to understand the kinetic gas theory.			
	CO-3. Students will be able to explain/analyze the principle of equipartition of			
	energy.			
	CO-4. Knowledge will be gained on the Debye-Huckel-Onsager equation,			
	Stokes-Einstein relation.			
	CO-5. The basic concept will be understood on electrochemical cells, Nernst			
	equations.			
PAPER M 202	CO-1. Students will learn about the conformation of ethane, ethane, butane,			
Organic Chemistry	cyclohexane.			
	CO-2. The students will be able to understand the mechanism of electrophilic			
	aromatic substitution.			
	CO-3. The students will be able to understand the mechanism of nucleophilic			
	aromatic substitution.			
	CO-4. The laboratory course will help the students to practically determine			
	the different unknown organic compounds.			
	Semester-III			
Demoster-111				

Course	Outcome (After completion of these courses students should be able to)
PAPER M 301	CO-1. Students will learn about the basic quantum mechanical ideas and
Structure and	principles leading to atomic structure.
Bonding	CO-2. Students will be able to understand the postulates and explanation for
	black body radiation.
	CO-3. Students will be able to gain knowledge on the dual character of
	particles.
	CO-4. Definition of micro and macro particles.
PAPER M 302	CO-1. The students will be able to gather knowledge on the chemistry of
Chemical Bonding	Valence bond approach to bonding in diatomic molecules outline of concept
	of overlap (HF and H ₂).
	CO-2. Students will be able to describe Bond moments and dipole moments.
	CO-3. Concept of electro negativity -explanation of molecular properties on
	the basis of electro negativity.
	CO-4. Shapes of molecules- VSEPR theory.
	CO-5. Students will learn about the Molecular orbital theory of homonuclear
	diatomic molecules (N2, O2, F2, CO, NO etc).
	CO-6. In laboratory experiments, students will learn about the inorganic salt
	analysis/preparation.
	Semester-IV
Course	Outcome (After completion of these courses students should be able to)
PAPER M 401	CO-1. Students will be able to understand the groupwise and period wise
Inorganic Chemistry	trends in physical and chemical properties of elements and their compounds.
I	CO-2. Students will be able to learned Ionization energy and electron affinity
	of atoms.
	CO-3. Non aqueous solvents: liquid ammonia, liquid sulphur dioxide, liquid
	HF and liquid N ₂ O ₄ .
PAPER M 402	CO-1. Students shall demonstrate the ability to describe the non transition
Inorganic Chemistry	compounds.
II	CO-2. Students will gain knowledge on noble gas compounds-xenon oxides
	and fluorides.
	CO-3. Students will be able to gain knowledge on electronic configuration
	and general periodic trends, comparative study of first transition series
	and general periodic trends, comparative study of first transition series

	elements, preparation, properties and reactivity of oxides.
	CO-4. Coordination Compounds: Werner's theory, structural and stereo
	isomers of complex compounds, survey of different types of ligands, IUPAC
	nomenclature of coordination compounds.
	CO-5. Through the experiments students will also be able to know the
	hardness of water by EDTA and preparation of inorganic compounds.
	Semester-V
Course	Outcome (After completion of these courses students should be able to)
PAPER M 501:	CO-1. Through this course the students will be introduced to black body
Quantum	radiations, photoelectric effect and Compton effect.
Chemistry	CO-2. Students will be introduced to the importance of Wave functions,
	Operators, eigen functions and eigen values.
	CO-3. Students will able to understand Schrodinger wave equation.
	CO-4. Model system (both 1-D & 3-D boxes) particles in a ring.
	CO-5. The Hamiltonian and Schrodinger equation for hydrogen atom, energy
	levels and quantum numbers.
PAPER M 502	CO-1. Students will be able to explain/describe the important features of
Physical Chemistry	Collision theory, activated complex theory; Eyring equation – thermodynamic
	formulation.
	CO-2. Theory of unimolecular reactions (Lindemann) – dynamic molecular
	collisions.
	CO-3. Laws of photochemical equivalence, quantum yield, chemical kinetics
	of H ₂ -Br ₂ , H ₂ -Cl ₂ reaction.
	CO-4. Definition of phase, meaning of components and degrees of freedom.
	Derivation of phase rule. Phase diagram of one component system (water).
PAPER M 503	CO-1. The course helps in introducing the student's different organic
Organic Chemistry	mechanism (witting reaction, Whitmore 1,2 Shift, Wagner-Meerwein, Wolff,
	Hofmann, Lossen, Curtius, Schmidt, Beckman, Favorskii, Benzil- benzilic
	acid, Baeyer Villiger.
	CO-2. Fries rearrangement (aromatic electrophilic substitution).
	CO-3. The students will able to understand direct electron transfer:
	Clemmensen (Nakabayashi mechanism).

	CO-4. The students will able to understand the basics addition- elimination					
	reactions.					
	CO-5. Experiments in this course will boost their knowledge on UV-visible					
	spectroscopic technique and Colourimetry					
PAPER M 504	CO-1. Students will able to understand on the topic of group theory,					
Inorganic	symmetry elements and symmetry operation, point group classification.					
Chemistry	CO-2. Students will able to understand Crystal field theory and ligand field					
,	theory and their application.					
	CO-3. Molecular orbital theory of octahedral complexes (without and with p					
	bonding).					
	CO-4. Some important homogeneous catalysis by transition metal complexes					
	(isomerization, hydrogenation, hydroformylation and Ziegler-Natta					
	Polymerization).					
	Semester-VI					
Course	Outcome (After completion of these courses students should be able to)					
PAPER M 601	CO-1. The course helps in introducing the students with three important areas-					
Spectroscopy	molecular spectroscopy					
	CO-2. Interaction between spin and magnetic field – Nuclear spin – Nuclear					
	magnetic resonance spectroscopy.					
	CO-3. In spectroscopy unit, rotational, vibrational, Raman, electronic, spin					
	resonance, and electronic spectroscopy are introduced.					
	CO-4. The students will able to understand the basics of various aspects of					
	photochemistry.					
	CO-5. Experiments in this course will boost their knowledge on UV-visible					
	spectroscopic technique and Colourimetry					
	CO-6. Students will gain knowledge on the topic of mass spectroscopy.					
PAPER M 602	CO-1. Students will learn about the laws of Crystallography, Miller indices					
Physical Chemistry	etc.					
	CO-2. Students shall be learning about Bragg's equation.					
	CO-3. Students will learn about Schottky and Frenkel defects.					
	CO-4. Macromolecules and colloids and the difference between the p-type, n-					
	type semiconductors will be learned.					
i .	CO-5. Able to understand Molecular energy levels and Boltzmann					

	distribution mode sular months on function			
	distribution, molecular partition function.			
	CO-6. Translational, rotational and vibrational partition functions.			
PAPER M 603	CO-1. Gain knowledge on the theory of photochemistry: photophysical			
Organic Chemistry	processes.			
	CO-2. The complete knowledge will be gained on Jablonski diagram, Franck-			
	Condon Principles.			
	CO-3. The different between fluorescence and phosphorescence will be			
	studied.			
	CO-4. Students will learn about Norrish type I & Norrish type II reactions,			
	cis-trans isomerisation and dimerization, cycloaddition of olefins.			
PAPER M 604	CO-1. Students are able to understand the concept of Orgel diagram, Laporte			
Inorganic	selection rule.			
Chemistry	CO-2. Gain knowledge on the vibronic coupling and colour complexes.			
+	CO-3. Students are able to explain/gain knowledge on the metalloproteins and			
PAPER M 605	their role in photosynthesis, respiration, Nitrogen fixation.			
	CO-4. Students are able to understand the concept nuclear chemistry and also			
	able to understand the group of lanthanides and actinides series.			
	CO-5. In laboratory experiments, students are able to understand how to			
	calculate the coefficient of viscosity by using Oswald viscometer, surface			
	tension of liquids by stalagmometer and also learn about the Beer-Lambert			
	law using colorimeter.			
PAPER M 606	CO-1. Students will be able to understand the connotation of research through			
Project work (6	literature survey.			
months)	CO-2 Students will be able to use and apply new software's for research			
	purpose.			
	CO-3 Students will be able to develop some interests and ideas to pursue			
	research as their career.			