

Department of Chemistry

Suren Das College, Hajo, Kamrup, Assam Program Outcome, Program Specific Outcome, Course Outcome CBCS Core-Course under Gauhati University

B. Sc. Chemistry (CBCS)

Program Outcomes (POs)

Department of	After successfully completion of three years degree program in
Chemistry	Chemistry under CBCS, a student should be able to
Program Outcomes	POs-1. To impart knowledge of General Chemistry covering all the
(POs)	aspects viz. inorganic, organic, physical and analytical Chemistry.
	POs-2. Solve the problem and also think methodically, independently
	and draw a logical conclusion.
	POs-3. Employ critical thinking and the scientific knowledge to design,
	carry out, record and analyse the results of chemical reactions.
	POs-4. Create an awareness of the impact of chemistry on the
	environment, society, and development outside the scientific
	community.
	POs-5. Find out the green route for chemical reaction for sustainable
	development.
	POs-6. To inculcate the scientific temperament in the students and
	outside the scientific community.

Semester-I

CHE-HC-1016: INORGANIC CHEMISTRY-I (Credits: Theory-04, Lab-02) CHE-HC-1026: PHYSICAL CHEMISTRY I (Credits: Theory-04, Lab-02) *Semester-II* CHE-HC-2016: ORGANIC CHEMISTRY I (Credits: Theory-04, Lab-02) CHE-HC-2026: PHYSICAL CHEMISTRY II (Credits: Theory-04, Lab-02)

Semester-III

CHE-HC-3016: INORGANIC CHEMISTRY-II (Credits: Theory-04, Lab-02)

CHE-HC-3026: ORGANIC CHEMISTRY-II (Credits: Theory-04, Practicals-02) CHE-HC-3036: PHYSICAL CHEMISTRY-III (Credits: Theory-04, Lab-02) CHE-SE-3034: Basic Analytical Chemistry (Credits: 04)

Semester-IV

CHE-HC-4016: INORGANIC CHEMISTRY-III (Credits: Theory-04, Lab-02) CHE-HC-4026: ORGANIC CHEMISTRY-III (Credits: Theory-04, Lab-02) CHE-HC-4036: PHYSICAL CHEMISTRY-IV (Credits: Theory-04, Lab-02) CHE-SE-4024: Green Methods in Chemistry (Credits: 04) *Semester-V* CHE-HC-5016: ORGANIC CHEMISTRY-IV (Credits: Theory-04, Lab-02) CHE-HC-5026: PHYSICAL CHEMISTRY V (Credits: Theory-04, Lab-02) CHE-HE-5026: Analytical Methods in Chemistry (Credits: Theory-04, Lab-02) CHE-HE-5056: Polymer Chemistry (Credits: Theory-04, Lab -02) CHE-HE-5056: Polymer Chemistry (Credits: Theory-04, Lab -02) *Semester-VI* CHE-HC-6016: INORGANIC CHEMISTRY-IV (Credits: Theory-04, Lab-02) CHE-HC-6026: ORGANIC CHEMISTRY-V (Credits: Theory-04, Lab-02) CHE-HE-6016: Green Chemistry (Credits: Theory-04, Lab -02) CHE-HE-6016: Green Chemistry (Credits: Theory-04, Lab -02) CHE-HE-6056: Dissertation (Credits: Theory-04, Lab -02)

Programme Specific Outcomes (Chemistry Core CBCS)

Programme Specific	PSOs-1. Gain the knowledge of Chemistry through theory and practical's.
Outcomes (PSOs)	PSOs-2. To explain nomenclature, stereochemistry, structures, reactivity,
	and mechanism of the chemical reactions.
	PSOs-3. Identify chemical formula and solve numerical problems.
	PSOs-4. Use modern chemical tools, Models, UV Spectrophotometer,
	Chemdraw, Charts and Equipments.
	PSOs-5. Know structure-activity relationship.
	PSOs-6. Understand good laboratory practices and safety.
	PSOs-7. Develop research-oriented skills.
	PSOs-8. Make aware and handle the sophisticated
	instruments/equipments.

Course Outcomes (Chemistry Core CBCS)

Semester-I	
Course	Outcome (After completion of these courses students should be able to)
CHE-HC-1016:	CO-1. The students will understand the theoretical background about the basic
INORGANIC	constituents of matter - atoms, ions and molecules in terms of their electronic
CHEMISTRY-I	structure and reactivity
	CO-2. Knowledge will be gained on the reactivity of chemical species based on
	their electron transfer affinity.
	CO-3. Understanding will be gained on the periodic classification of elements
	in the periodic table and changes in properties along the periods and groups in
	detail.
	CO-4. The laboratory course will help the students to have an exposure to
	hands-on experience of basic quantitative analytical techniques related to
	volumetric titrations.
CHE-HC-1026:	CO-1. The students will learn about the kinetic theory of gases, ideal gas and
PHYSICAL	real gases.
CHEMISTRY I	CO-2. In liquid state unit, the students will gain knowledge on the qualitative
	treatment of the structure of liquids along with the physical properties of liquid,
	viz, vapour pressure, surface tension and viscosity.
	CO-3. In the molecular and crystal symmetry unit students will be introduced
	to the elementary idea of symmetry which will be useful to understand solid
	state chemistry and group theory in some higher courses.
	CO-4. In solid state unit the students will learn the basic solid state chemistry
	application of x-ray crystallography for the determination of some very simple
	crystal structures.
	CO-5. The students will also learn about an important topic "ionic equilibria"
	in this course.
	CO-6. The laboratory course will help the students to have an exposure to
	hands-on experience in analysing various properties of liquids such as viscosity
	and surface tension on the basis of the knowledge gained in the theory course.
Semester-II	
Course	Outcome (After completion of these courses students should be able to)

CHE-HC-2016:	CO-1. The students will learn about basic organic chemistry, the knowledge on
ORGANIC	different types of aliphatic hydrocarbons: their synthesis processes, reactions
CHEMISTRY I	and mechanisms.
	CO-2. The students will gain knowledge on the different types of effects such
	as inductive, electromeric, resonance and mesomeric etc. involved with organic
	compounds.
	CO-3. Students will be able to explain/analyze the stereo chemical aspects of
	organic compounds
	CO-4. The laboratory course will help the students to gain an understanding on
	purification of organic compounds, determining their melting points and boiling
	points.
	CO-5. The laboratory course will also help the students on knowing the
	chromatographic techniques (paper and thin layer) involved for the separation
	of a mixture of organic compounds.
СНЕ-НС-2026:	CO-1. In this course the students will gain knowledge on the laws of
PHYSICAL	thermodynamics, thermochemistry, thermodynamic functions, relations
CHEMISTRY II	between thermodynamic properties, Gibbs Helmholtz equation, Maxwell
	relations etc.
	CO-2. The students are expected to learn about the partial molar quantities,
	chemical equilibrium, solutions and colligative properties.
	CO-3. The students will be able to understand the chemical systems from
	thermodynamic point of view.
	CO-4. The laboratory course will help the students to practically determine the
	thermodynamic properties such as heat capacity, enthalpy of ionization which
	was covered in the theoretical course.
	Semester-III
Course	Outcome (After completion of these courses students should be able to)
СНЕ-НС-3016:	CO-1. The students would be able to apply theoretical principles of redox
INORGANIC	chemistry in the understanding of metallurgical processes.
CHEMISTRY-II	CO-2. Students will be able to identify the variety of s and p block compounds
	and comprehend their preparation, structure, bonding, properties and uses.
	CO-3. Students will be able to gain knowledge on the noble gases, their
	structures and the nature of bonding.

	CO-4. Experiments in this course will boost their quantitative estimation skills
	and introduce the students to preparative methods in inorganic chemistry.
CHE-HC-3026:	CO-1. The students will be able to gather knowledge on the chemistry of
ORGANIC	Halogenated Hydrocarbons
CHEMISTRY-II	CO-2. Students will be able to describe and classify organic compounds in
	terms of their functional groups and reactivity.
	CO-3. Experiments in this course will boost their knowledge on testing the
	presence of different types of functional groups such as alcohols, phenols,
	carbonyl and carboxylic acid group.
CHE-HC-3036:	CO-1. The students are expected to learn phase rule and its application in some
PHYSICAL	specific systems.
CHEMISTRY-III	CO-2. They will also learn rate laws of chemical transformation, experimental
	methods of rate law determination, steady state approximation etc. in chemical
	kinetics unit.
	CO-3. After attending this course, the students will be able to understand
	different types of surface adsorption processes and basics of catalysis including
	enzyme catalysis, acid base catalysis and particle size effect on catalysis.
	CO-4. Experiments in this course will boost their knowledge on practical
	application for determining phase equilibrium and also on determining the
	kinetics of a chemical reaction.
	Semester-IV
Course	Outcome (After completion of these courses students should be able to)
CHE-HC-4016:	CO-1. Students will be able to name coordination compounds according to
INORGANIC	IUPAC, explain bonding in this class of compounds, understand their various
CHEMISTRY-III	properties in terms of CFSE and predict reactivity.
	CO-2. Students will be able to appreciate the general trends in the properties of
	transition elements in the periodic table and identify differences among the
	rows.
	CO-3. Through the experiments students not only will be able to prepare,
	estimate or separate metal complexes/compounds but also will be able to design
	experiments independently which they should be able to apply if and when
	required.

CHE-HC-4026:	CO-1. Students shall demonstrate the ability to identify and classify different
ORGANIC	types of N-based derivatives
CHEMISTRY-III	CO-2. Students will gain knowledge on different types of natural products such
	as alkaloids and terpenoids.
	CO-3. Students will be able to gain knowledge on polynuclear hydrocarbons.
	CO-4. Through the experiments students will be able to know the detection of
	N, S and halogens present in organic compounds.
	CO-5. Through the experiments students will also be able to know Qualitative
	analysis of unknown organic compounds containing simple functional groups
	(alcohols, carboxylic acids, phenols and carbonyl compounds)
СНЕ-НС-4036:	CO-1. In this course the students will learn theories of conductance and
PHYSICAL	electrochemistry.
CHEMISTRY-IV	CO-2. Students will also understand some very important topics such as
	solubility and solubility products, ionic products of water, conductometric
	titrations etc.
	CO-3. The students are also expected to understand the various parts of
	electrochemical cells along with Faraday's Laws of electrolysis.
	CO-4. The students will also gain basic theoretical idea of electrical & magnetic
	properties of atoms and molecules.
	Semester-V
Course	Outcome (After completion of these courses students should be able to)
CHE-HC-5016:	CO-1. Through this course the students are introduced to nucleic acids, amino
ORGANIC	acids and pharmaceutical compounds.
CHEMISTRY-IV	CO-2. Students are introduced to the importance of nucleic acids, amino acids
	and develop basic understanding of enzymes, bioenergetics and pharmaceutical
	compounds.
	CO-3. Students will be able to explain/describe the important features of nucleic
	acids, amino acids and enzymes and develop their ability to examine their
	properties and applications.
	CO-4. The practical course will expose the students to isolate and characterize
	the natural products.

CHE-HC-5026:	CO-1. The course helps in introducing the students with three important areas-	
PHYSICAL	quantum chemistry, molecular spectroscopy	
CHEMISTRY V	CO-2. In quantum chemistry unit the students will be taught the postulates of	
	quantum mechanics and the application of quantum mechanical ideas in some	
	simple systems such as particle in a box, rigid rotor, simple harmonic oscillator	
	etc.	
	CO-3. In spectroscopy unit, rotational, vibrational, raman, electronic, spin	
	resonance, and electronic spectroscopy are introduced.	
	CO-4. The students will able to understand the basics of various aspects of	
	photochemistry.	
	CO-5. Experiments in this course will boost their knowledge on UV-visible	
	spectroscopic technique and Colourimetry	
Semester-VI		
Course	Outcome (After completion of these courses students should be able to)	
CHE-HC-6016:	CO-1. The students will get acquainted with the kinetic and thermodynamic	
INORGANIC	factors governing the reaction path and stability of inorganic compounds.	
CHEMISTRY-IV	CO-2. Through the chapter on organometallic compounds the students will	
	gather knowledge about the importance of metal carbon bond to form	
	complexes and their application as catalysts.	
	CO-3. Students will learn factors leading to stability of organometallic	
	compounds, their synthesis, reactivity and uses.	
	CO-4. Qualitative inorganic analysis is included which give students an idea	
	and hands on experience of application of inorganic chemistry. Students learn	
	how differential reactivity under different conditions of pH can be used to	
	identify variety of ions in a complex mixture.	
	CO-5. Experiments related to synthesis and characterization of coordination	
	compounds supplement the theoretical knowledge.	
СНЕ-НС-6026:	CO-1. Students learn about the different spectroscopic techniques and their	
ORGANIC	applications in organic chemistry.	
CHEMISTRY-V	CO-2. Students shall be apprised with carbohydrate chemistry	
	CO-3. Students will learn about dyes and polymers and their structure,	
	reactivity and chemical properties.	
	CO-4. Experiments related to this course supplement the theoretical knowledge.	

Course Outcomes (Chemistry Skill Enhancement Courses)

SEC for Semester-III	
Course	Outcome (After completion of these courses students should be able to)
CHE-SE-3034:	CO-1. The students will gain knowledge on different micro and semimicro
Basic Analytical	analytical techniques and help develop the ability to use modern instrumental
Chemistry (Credits:	methods.
04)	CO-2. Students are able to explain the basic principles of chemical analysis.
	CO-3. Students are able to design/implement microscale and semimicro
	experiments, record, interpret and analyze data following scientific
	methodology.
	CO-4. The instrumental demonstrations included in the course helps the
	students to get hands-on-exposure to the supplement the theoretical knowledge.
	Must Read
1. Willard, H. H.	Instrumental Methods of Analysis, CBS Publishers.
2. Skoog & Lerry. Instrumental Methods of Analysis, Saunders College Publications, New York.	
3. Skoog, D.A.; West, D.M. & Holler, F.J. Fundamentals of Analytical Chemistry 6th Ed.,	
Saunders College Publishing, Fort Worth (1992).	
4. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman.	
5. Dean, J. A. Analytical Chemistry Notebook, McGraw Hill.	
6. Day, R. A. & U	Jnderwood, A. L. Quantitative Analysis, Prentice Hall of India.
7. Freifelder, D. F	Physical Biochemistry 2nd Ed., W.H. Freeman and Co., N.Y. USA (1982).
8. Cooper, T.G. T	The Tools of Biochemistry, John Wiley and Sons, N.Y. USA. 16 (1977).
9. Vogel, A. I. Vo	ogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall.
10. Vogel, A. I. Vo	ogel's Quantitative Chemical Analysis 6th Ed., Prentice Hall.
11. Robinson, J.W	. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc., New York
(1995).	

SEC for Semester-IV	
Course	Outcome (After completion of these courses students should be able to)
CHE-SE-4024:	CO-1. Students shall be able to describe and evaluate chemical products and
Green Methods in	processes from environmental perspective

Chemistry (Credits:	CO-2. Students will learn about the tools of Green chemistry and twelve	
04)	principles of Green Chemistry	
	CO-3. Students will learn to define and propose sustainable solutions and	
	critically assess the methods for waste reduction and recycling.	
	CO-4. The course introduces the students to the real world cases in green	
	chemistry	
Must Read		
1. Manahan S.E.	(2005) Environmental Chemistry, CRC Press	
2. Miller, G.T. (2	006) Environmental Science 11th edition. Brooks/Cole	

3. Mishra, A. (2005) Environmental Studies. Selective and Scientific Books

Course Outcomes (Discipline Specific Elective Papers)

DSE for Semester-V		
Course	Outcome (After completion of these courses students should be able to)	
CHE-HE-5026:	CO-1. The course will enable students to have knowledge on the qualitative and	
ANALYTICAL	quantitative aspects of analysis	
METHODS IN	CO-2. This course will help students develop a theoretical understanding about	
CHEMISTRY	choice of various analytical techniques used for qualitative and quantitative	
(Credits: Theory-04,	characterization of samples.	
Lab -02)	CO-3. The experiments included in the course will help students to gain hands	
	on experience of the techniques discussed in the theoretical section.	
	CO-4. Students will be enabled to take judicious decisions while analyzing	
	different samples.	
	CO-5. The instrumental demonstrations included in the course helps the	
	students to get hands-on-exposure to the supplement the theoretical knowledge.	
Must Read		
1. Mendham, J. e	et al.: Vogel's Text Book of Quantitative Chemical Analysis; 6th Ed. Pearson	
Education, 2009.		
2. Willard, Hober	2. Willard, Hobert H. et al.: Instrumental Methods of Analysis, 7th Ed. CBS Publishers &	
Distributors, 20	004.	
3. Christian, Gary	D: Analytical Chemistry, 6th Ed. Wiley India (P) Ltd., 2004.	
4. Harris, Daniel	C: Exploring Chemical Analysis, 4th Ed. W. H. Freeman, 2008. 45	

- Khopkar, S.M.: Basic Concepts of Analytical Chemistry, 3rd Ed. New Age, International Publisher, 2009.
- **6.** Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, 6th Ed. Thomson Asia Pvt. Ltd. Singapore
- Mikes, O. and Chalmes, R.A. Laboratory Hand Book of Chromatographic & Allied Methods, Elles Harwood Ltd. London.1979
- 8. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

CHE-HE-5056:	CO-1. Through the course, the students will be introduced to the theory and	
Polymer Chemistry	applications of polymer chemistry.	
(Credits: Theory-04,	CO-2. The students will learn about the history of polymeric materials	
Lab -02)	CO-3. The students will learn the definition and classifications of polymers,	
	kinetics of polymerization, molecular weight of polymers, glass transition	
	temperature, and polymer solutions etc.	
	CO-4. The students will learn briefly the preparation, structure and properties	
	of some industrially important and technologically promising polymers.	
Must Read		
12. Seymour's Pol	ymer Chemistry, Marcel Dekker, Inc.	
13. G. Odian: Prin	ciples of Polymerization, John Wiley.	
14. F.W. Billmeye	r: Text Book of Polymer Science, John Wiley.	
15. P. Ghosh: Poly	mer Science & Technology, Tata Mcgraw-Hill.	
16. R.W. Lenz: Or	ganic Chemistry of Synthetic High Polymers.	

DSE for Semester-VI		
Course	Outcome (After completion of these courses students should be able to)	
CHE-HE-6016 :	CO-1. Students will be introduced to green chemistry and its 12 basic	
GREEN	principles.	
CHEMISTRY	CO-2. This course will make them conversant with applications of green	
(Credits: Theory-04,	chemistry to organic synthesis.	
Lab-02)	CO-3. Through this course the students will be prepared for taking up entry	
	level jobs in the chemical industry.	
	CO-4. They also will have the option of studying further in the area of green	
	chemistry and will learn about the future perspectives.	

C	O-5. The experiments included in the course will help the students to learn	
ho	ow to avoid waste and select green chemicals for their synthesis.	
Must Read		
4. V.K. Ahluwalia & M.R. Kidwai: New Trends in Green Chemistry, Anamalaya Publishers		
(2005).		
5. P.T. Anastas & J.K. Warner: Oxford Green Chemistry- Theory and Practical, University Press		
(1998).		
6. A.S. Matlack: Introduction to Green Chemistry, Marcel Dekker (2001).		
7. M.C. Cann & M.E. Connely: Real-World cases in Green Chemistry, American Chemical		
Society, Washington (2000).		
8. M.A. Ryan & M. Tinnesand, Introduction to Green Chemistry, American Chemical Society,		
Washington (2002).		
9. Pavia, D. L. Lampman, G. H. & Kriz, G.S. W B Introduction to Organic Laboratory Techniques:		
A Microscale Approach, 4th Ed., Brooks/Cole; 2007.		
CHE-HE-6056:	CO-1. Student will complete a project work and then prepare a report on	
Dissertation (Credits:	that.	
Theory-04, Lab -02)	CO-2. Students will be introduced to new fields of research	
	CO-3. They will learn how to do literature review.	
	CO-4. They will learn how to search for research journals using different	
	search engines such as Sci-finder, Scopus, Sci-hub.	
	CO-5. They will learn the basics of formulating and drafting a report on	
	the provided research topic.	